
5-V Low-Drop Fixed Voltage Regulator

ILE4268

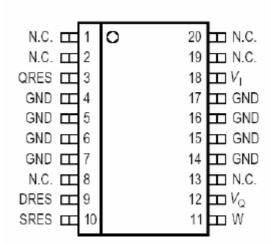
Features

- Output voltage tolerance < ± 2 %
- Very low current consumption
- Low-drop voltage
- Watchdog
- · Settable reset threshold
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range

Functional Description

This device is a 5-V low-drop fixed-voltage regulator. The maximum input voltage is 45 V. It can deliver an output current of at least 180 mA. The IC is short-circuit proof and features temperature protection that disables the circuit in the event of impermissibly high temperatures. The watchdog function is disabled as a function of the load, so that a controller is not interrupted during sleep mode by a watchdog reset.

Application Description


The IC regulates an input voltage V, in the range 5.5~V < V, < 45~V to Vqrated = 5-O~V. In the event of an output voltage $v_Q < V_{RT}$, a reset signal is generated. The wiring of the reset switching threshold input enables the value of V_{RT} to be reduced. The reset delay time can be adjusted using an external capacitor. The integrated watchdog monitors the connected active controller. If there is no positive-going edge at the watchdog input, the reset output is set to low. The reset delay capacitor provides a wide adjustment range for the pulse repetition time. The watchdog function is only activated if the load exceeds 8 mA. This ensures that a microcontroller is not activated during power-down and the current drain is not increased. The IC is protected against overload and overtemperature.

Pin Configuration

(top view)

P-DSO-20-6

Pin Definitions and Functions

Pin	Symbol	Function
1, 2, 8, 13, 19, 20	N. C.	Not connected.
3	QRES	Reset output ; the open collector output is connected to the 5-V output via an integrated resistor of 30 k Ω .
4 7, 14 17	GND	Ground
9	DRES	Reset delay ; connect a capacitor to ground for delay time adjustment.
10	SRES	Reset switching threshold; for setting the switching threshold, output to ground with voltage divider. If this input is connected to ground, the reset is triggered at an output voltage of 4.5 V.
11	W	Watchdog input ; positive-edge-triggered input for monitoring a microcontroller.
12	V_{Q}	5-V output voltage ; block to ground with 22-μF capacitor, ESR < 3 Ω .
18	V_{I}	Input voltage; block to ground directly on the IC with ceramic

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If The externally scaled down output voltage at the reset threshold input drops below 1.35 V, the external reset delay capacitor is discharged by the reset generator. If the voltage on the capacitor reaches the lower threshold $V_{\rm ST}$, a reset signal is generated on the reset output and not cancelled again until the upper threshold voltage is exceeded. If the reset threshold input is connected to GND, reset is triggered at an output voltage of 4.5 V. A connected microcontroller is monitored by the watchdog logic. If pulses are missing, the rest output is set to low. The pulse sequence time can be set within a wide range with the reset delay capacitor.

The IC also incorporates a member of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

Block Diagram Output Input Temperature Protection Reset Sensor Circuit Output Reset Generator Reset Control Switching Amplifier Threshold Reset Bandgap Adjustment Watchdog Delay Reference 4-7, 14-17 Watchdog Input

Absolute Maximum Ratings Tj=-40 to 150°C

Parameter	Symbol	Limit Values		Unit	Notes	
Parameter		min.	max.	Unit	Notes	
Input						
Input voltage	Vi	-30	45	V		
Input current	li				Internally limited	
Reset Output						
Voltage Current	VR	-0.3	7	V	Internally limited	
	I_R					
Reset Delay						
Voltage	VD	-0.3	7	V		
Current	I_D				Internally limited	
Watchdog						
Watchdog input	Vw	-0.3	7	V	-	
Reset Input						
Reset threshold	VRE	-0.3	7	V	-	
Output	_					
Output voltage	V_Q	-0.3	7	V		
Output current	I_Q				Internally limited	
Ground						
Current	I_{M}	-100	50	mA	-	
Temperatures	_		_			
Junction temperature	Ti		150	°C	_	
Storage temperature	Ts	-50	150	°C		

Operating Range

Parameter	Symbol	Limit V	/alues	Unit	Notes		
Farameter		min.	max.				
Input voltage	Vi	-	45	V	-		
Junction temperature	Tj	-40	150	°C	-		
Thermal Resistance							
Junction ambient (soldered)	RthjA		70	K/W			
Junction case	RthjC		25	K/W			

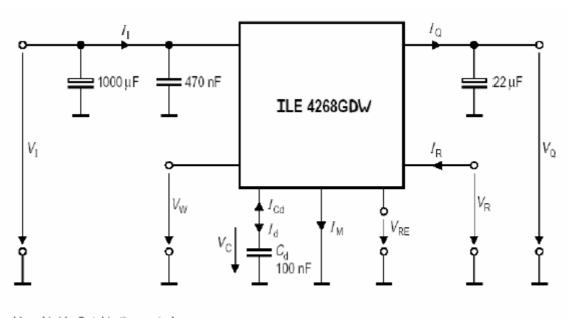
Optimum reliability and life time are guaranteed if the junction temperature does not exceed 125 °C in operating mode. Operation at up to the maximum junction temperature of 150 °C is possible in principle. Note, however, that operation at the maximum permitted ratings could affect the reliability of the device.

Characteristics

Vi = 13.5 V;- 40 °C \leq Tj \leq 125 °C (unless otherwise specified)

Peremeter	Symbol	_ `	imit Val		Unit	Test Condition	
Parameter		min.	typ.	max.			
Output voltage	VQ	4.90	5.00	5.10	V	$5mA \le I_Q \le 150mA$;	
						6V ≤ V i≤ 28V;	
Output current limiting	IQ	180	250	_	mA	_	
Current consumption	Iq	_	300	450	НА	IQ = 0 mA	
Iq = Ii - IQ							
Current consumption	Iq	_	13	20	mA	IQ = 150 mA	
Iq = Ii - IQ							
Drop voltage	Vdr	_	0.25	0.5	V	IQ= 150mA ¹⁾	
Load regulation	ΔV_Q	_	10	30	mV	IQ= 5 to 150mA	
Supply voltage	ΔV_Q	_	10	30	mV	Vi = 6 to 28 V	
regulation						IQ= 150mA	
Reset Generator							
Switching threshold	V_{RT}	4.2	4.5	4.8	V	-	
Switching voltage	VRE	1.28	1.35	1.45	V	-	
Saturation voltage	VR	-	0.2	0.5	V	1 mA extern	
Saturation voltage	Vc	-	30	100	mV	VQ < VRT	
Charging current	ld	5	12	18	μΑ	Vc = 1.0V	
Delay switching threshold	VDU	1.4	1.8	2.2	V	_	
Delay time	t _d	10	15	25	ms	Cd = 100 nF	
Delay time	t _t	-	2	-	ms	Cd = 100 nF	
Pull-up	R_R	18	30	46	kΩ	with resp. to VQ	
Lower switching threshold	V_{DRL}	0.2	0.4	0.55	V	_	

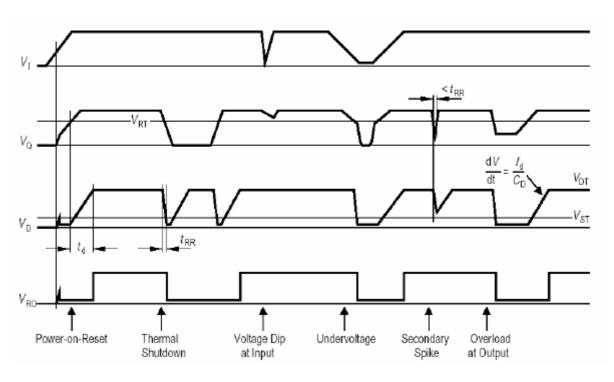
¹⁾ Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

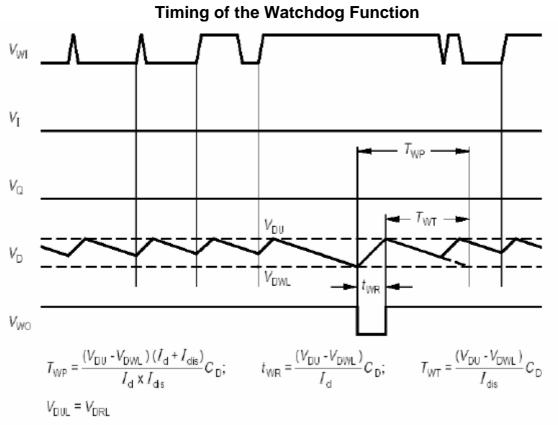


Characteristics (cont'd)

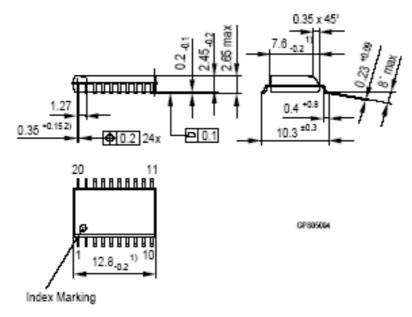
Parameter	Symbol	Limit Values			Unit	Test Condition	
1 di dilictoi		min.	typ.	max.	Oilit		
Watchdog							
Discharge current	I_{Cd}	1.5	3.5	5.2	μΑ	Vc = 1.0V	
Charging current	ld	5	12	18	μΑ	Vc = 1.0V	
Switching voltage	V_{Cd}	1.6	1.8	2.0	V	-	
Lower switching threshold	V_{DWL}	0.2	0.4	0.55	V	_	
Watchdog periode	T_{WP}	30	55	75	ms	Q = 100nF	
Watchdog trigger time	F _{wt}	25	40	60	ms	Cd = 100nF	
Activating current	IQ	2	8	15	mΑ	Activates watchdog	
Slew rate	Vw	5			V/μs	from 20 % up to 80 % VQ	

Note: The reset output is low in range from $V_{\rm Q}$ = 1 V to $V_{\rm RT}$.


Test Circuit



 V_{Dr} = V_{I} - V_{Q} Outside the control range


Timing (Watchdog Disabled)

Package Dimensions

P-DSO-20-6

- 1) Does not include plastic or metal protrusions of 0.15 max per side
- 2) Does not include dambar protrusion of 0.05 max per side

